Myoclonic Twitching and Sleep-Dependent Plasticity in the Developing Sensorimotor System.
نویسندگان
چکیده
As bodies grow and change throughout early development and across the lifespan, animals must develop, refine, and maintain accurate sensorimotor maps. Here we review evidence that myoclonic twitches-brief and discrete contractions of the muscles, occurring exclusively during REM (or active) sleep, that result in jerks of the limbs-help animals map their ever-changing bodies by activating skeletal muscles to produce corresponding sensory feedback, or reafference. First, we highlight the spatiotemporal characteristics of twitches. Second, we review findings in infant rats regarding the multitude of brain areas that are activated by twitches during sleep. Third, we discuss evidence demonstrating that the sensorimotor processing of twitches is different from that of wake movements; this state-related difference in sensorimotor processing provides perhaps the strongest evidence yet that twitches are uniquely suited to drive certain aspects of sensorimotor development. Finally, we suggest that twitching may help inform our understanding of neurodevelopmental disorders, perhaps even providing opportunities for their early detection and treatment.
منابع مشابه
REM sleep twitches rouse nascent cerebellar circuits: Implications for sensorimotor development.
The cerebellum is critical for sensorimotor integration and undergoes extensive postnatal development. During the first postnatal week in rats, climbing fibers polyinnervate Purkinje cells and, before granule cell migration, mossy fibers make transient, direct connections with Purkinje cells. Activity-dependent processes are assumed to play a critical role in the development and refinement of t...
متن کاملSensorimotor processing in the newborn rat red nucleus during active sleep.
Sensory feedback from sleep-related myoclonic twitches is thought to drive activity-dependent development in spinal cord and brain. However, little is known about the neural pathways involved in the generation of twitches early in development. The red nucleus (RN), source of the rubrospinal tract, has been implicated in the production of phasic motor activity during active sleep in adults. Here...
متن کاملThe Case of the Disappearing Spindle Burst
Sleep spindles are brief cortical oscillations at 10-15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts...
متن کاملSpatiotemporal Structure of REM Sleep Twitching Reveals Developmental Origins of Motor Synergies
BACKGROUND During active (or REM) sleep, infant mammals exhibit myoclonic twitches of skeletal muscles throughout the body, generating jerky, discrete movements of the distal limbs. Hundreds of thousands of limb twitches are produced daily, and sensory feedback from these movements is a substantial driver of infant brain activity, suggesting that they contribute to motor learning and sensorimot...
متن کاملTwitching in Sensorimotor Development from Sleeping Rats to Robots
It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current sleep medicine reports
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2015